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Vortices in the Landau–Ginzburg model of the quantized
Hall effect
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Département de Mathématiques, Université de Tours, Parc de Grandmont, F-37200 Tours, France
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Abstract. The ‘Landau–Ginzburg’ theory of Girvin and MacDonald, modified by adding the
natural magnetic term, is shown to admit stable topological as well as non-topological vortex
solutions. The system is the commonλ → 0 limit of two slightly different non-relativistic
Maxwell–Chern–Simons models of the type recently introduced by Manton. The equivalence
with the model of Zhang, Hansson and Kivelson is demonstrated.

In [GIR], Girvin and MacDonald presented a ‘Landau–Ginzburg’ theory for the quantum
Hall effect (QHE). On phenomenological grounds, they suggest representing the off-diagonal
long-range order (ODLRO) by a scalar fieldψ(x) on the plane, and that the frustration due
to deviations away from the quantized Laughlin density is caused by an effective gauge
potentiala(x). We propose to describe this static planar system by the Lagrange density

L = 1
2b

2+ |Dψ |2+ iφ(|ψ |2− 1)− i
κ

2
(φ∇× a+ a×∇φ) (1)

where b = ∇ × a is the effective magnetic field,D = ∇ + ia is the gauge-covariant
derivative, and the Lagrange multiplierφ is a scalar potential. Equation (1) only differs from
the original expression of Girvin and MacDonald in our having added the natural magnetic
term, b2/2, also present in conventional Landau–Ginzburg theory [LP]. The associated
equations of motion read

D2ψ = iφψ (2a)

κb = |ψ |2− 1 (2b)

∇× b − iκ∇× φ = − (2c)

where = −i(ψ∗Dψ − ψ(Dψ)∗) the current. The first is a static, gauged Schrödinger
equation. The second is the relation proposed by Girvin and MacDonald to relate the
magnetic field to the particle density. Note here the−1 coming from the weird term−iφ
in the Lagrangian, and representing the background charge [MAN]. The last equation is the
Ampère–Hall law: e = −i∇φ is an effective electric field, so thatκ is interpreted as the
Hall conductance.

This system is rather similar to those studied in Chern–Simons field theory [JP], and
in particular to that recently introduced by Manton [MAN, HHY]. Using these techniques,
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(i) we construct, with the method of Bogomolny [BOG], stable vortex solutions; (ii) point
out that (1) is theλ → 0 limit of two slightly different systems; (iii) demonstrate the
equivalence with another ‘Landau-Ginzburg’ model, introduced by Zhanget al [ZH].

Let us try to reduce the second-order equations to the first-order ‘self-dual’ system

(D1± iD2)ψ = 0 κb = |ψ |2− 1. (3)

From the first of these relations we infer thatD2 = ±b and  = ∓∇ × %. Inserting this
into the Schr̈odinger equation determines the multiplier field asφ = ∓ i

κ
(%− 1). It follows

that, from Amp̀ere’s law, the Hall conductanceκ has to be

κ = ± 1
2. (4)

The vector potential is expressed using the self-dual ansatz (3) asa = ∓ 1
2∇× log%+∇ω,

whereω is an arbitrary real function chosen so thata is regular [JP]. Inserting this into
(2b) we obtain, for both signs, the ‘Liouville-type’ equation

1 log% = 4(ρ − 1). (5)

Note that any solution will carry an effective magnetic as well as an electric field.
Now we have to find what kind of solutions we are interested in. To do this, let us

consider the energy,

H =
∫ {

b2

2
+ |Dψ |2

}
d2x. (6)

Using the identity|Dψ |2 = |(D1 ± iD2)ψ |2 ∓ b|ψ |2+ (surface term), as well as (2b), the
energy is rewritten as

H =
∫ {
|(D1± iD2)ψ |2+

(
1

2κ2
∓ 1

κ

)
|ψ |4+ 1

2κ2
+
(
− 1

κ2
± 1

κ

)
|ψ |2

}
d2x.

The quartic term disappears whenκ = ± 1
2, leaving us with

H =
∫
{|(D1± iD2)ψ |2+ 2(1− |ψ |2)} d2x. (7)

The system admits the zero-energy ground state (condensate)ψ ≡ 1 ande = 0, b = 0.
Then we have two possibilities.
• Either, to get finite energy, we can require that at infinity the solution tends to the

condensate state,|ψ | → 1 and|Dψ | → 0. These two conditions imply that the magnetic
flux is quantized,

8 ≡
∫
b d2x = 2πn (8)

where the integern is the ‘winding number’ ofψ , which maps the circle at infinity into
U(1). Then, using equation (2b), the ‘particle number’

N =
∫
(1− |ψ |2) d2x (9)

is finite, and is related to the flux asN = −κ8 = −2πκn. (N is conserved owing to the
continuity equation which follows from equation (2a).) Our finite-energy solutions (referred
to astopological vortices) therefore carry a non-vanishing flux as well as a charge. Their
energy satisfies, by equation (7), the ‘Bogomolny’ inequality

H > 2N = −4πκn = ∓2πn. (10)
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To get a positive bound,κ andn must have opposite signs: the upper (lower) sign works
for n < 0 (resp. forn > 0).

The ‘Bogomolny’ bound (10) is saturated when the self-duality equations (3) hold. (This
is in fact the case of ‘Bogomolny’ vortices in the Abelian Higgs model, so that equation (5)
admits a 2n-parameter family of solutions [WEIN].) Since they correspond to the absolute
minima of the energy, such solutions are stable.
• Another possibility is, however, to chooseb = b0 = −1/κ, e = 0, ψ ≡ 0 as the

ground state. This isnot a finite-energy solution, though subtracting its (constant) energy
density 1/2κ2 = 2 from (7), we get

H =
∫ {

b2

2
− b

2
0

2
+ |Dψ |2

}
d2x =

∫
{|(D1± iD2)ψ |2− 2|ψ |2} d2x. (7′)

Now we can look fornon-topologicalsolutions, i.e. whose such ‘number’, defined as

N =
∫
|ψ |2 d2x (9′)

converges. This ‘renormalized number’N is now a continuous, rather than a quantized
parameter, which takes any positive value. Then we get the modified Bogomolny bound

H > −2N (10′)

with the equality attained when the self-duality equations (3) hold. (Remember thatH is
the relative energy with respect to the infinite-energy background.)

Sinceψ → 0 at infinity, the conditionDψ → 0 does not now imply a quantized flux.
The integral (8) is indeed infinite, as one sees directly in the radial case from equation (12)
below. However, subtracting the constant background magnetic field,b = b0 = −1/κ, we
get the renormalized numberN in equation (9′):

8 ≡
∫
b d2x ≡

∫
(b − b0) d2x =

∫
1

κ
|ψ |2 d2x = 1

κ
N. (8′)

This ‘renormalized flux’ therefore depends on a continuous parameter, namely onN , just
as for relativistic non-topological solitons [JLW].

The most convenient way of studying the solutions is to work directly with thefirst-
order equations(3) rather than with the second-order equation (5). Assuming that the fields
have the formψ = f (r)einθ , ar = 0, aθ = a(r), the self-dual (SD) equations read

f ′ = ±n+ a
r

f
a′

r
= ±2(f 2− 1). (11)

Regularity at the origin requiresn andκ to be correlated as signn = −sign κ, so that we
get chiral solitons. The small-r behaviour isf (r) = αr |n|, a = ∓r2, whereα is a real
parameter. For larger, we find instead

f (r) ∼ 1− CK0(2r) ∼ 1− C e−2r√
r

b ∼ DrK1(2r) ∼ D e−2r√
r

for a topological vortex

f (r) ∼ e−r
2

b ∼ ∓2(1− e−2r2
)

for a non-topological vortex.

(12)

A simple numerical calculation shows that, for each integer value ofn, there is just
one radially symmetric topological vortex obtained forα = α0(n), while non-topological
vortices arise for an entire rangeα < α0(n) of the parameter. This behaviour is understood
by looking, following Ezawaet al [EZA], at the second-order equation (5). Again, restricting
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Figure 1. The order parameter density of the radially symmetric topological vortices with
winding numbern = 1, 2, 3. For each value ofn, there is exactly one vortex.

ourselves to the radial case, we can viewx = logf as the ‘position’ and the radial
coordinate,t ≡ r > 0, as ‘time’, so that equation (5) becomes

ẍ = −1

t
ẋ −∇U U(x) ≡ (2x − e2x). (13)

This is the equation of motion of a classical particle in a time-dependent frictional force
and an external potentialU(x). Observe thatU(x) increases fromx = −∞, reaches its
maximum atx = 0, and then decreases. Ast → ∞, f → 1 i.e. x → 0 for a topological
soliton, andf → 0 i.e.x →−∞ for a non-topological soliton. The regularity ofψ requires
f to vanish at the origin. Let us therefore consider a ‘particle’ which starts at ‘time’t = 0
from the ‘position’x = −∞. If its ‘energy’ is not sufficient to climb the potential hill, it
will, after some time, fall back tox = −∞ as t → ∞: we get a non-topological soliton.
Increasing the initial velocity, we can make our particle approachx = 0 when t → ∞,
yielding a topological soliton. Clearly, this only happens for some specific initial ‘energy’,
corresponding to a specific valueα = α0(n) of the initial parameter. If the ‘energy’ is even
higher, the particle overshoots: the required boundary conditions cannot be satisfied, so that
no self-dual vortex can exist.

The appearance of these two different types of vortex solutions can be understood by
adding a self-interaction potential,U(ψ), to the Lagrangian. The use of such a potential is
quite common in Landau–Ginzburg theory (see [LP, p 179]). In the context of the QHE, it
can be viewed as the remnant of the two-body potential in the second-quantized Hamiltonian
for spin-polarized electrons, when the effective theory is derived [ZH].
• For the symmetry breaking potential

U(ψ) = λ

8
(1− |ψ |2)2 (14)

finite energy requires|ψ | → 1 at infinity. The Bogomolny equation (3) then yields
topological vortex solutions, provided

λ = − 4

κ2
± 8

κ
. (15)

The potential in (14) is physically admissible (repulsive) whenλ > 0, i.e. |κ| > 1
2.

• For the non-symmetry-breaking potential

U = C + λ
8
|ψ |4 (16)
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Figure 2. The order parameter density of the radially symmetric non-topological vortices for
n = 1, 2, 3. For each value ofn, there is a full range of vortices.

finite energy requires instead|ψ | → 0 at infinity, and the Bogomolny trick works when
C = − 1

2κ
2 and for λ as in equation (15). The potential (16) is physically admissible

(attractive) whenλ 6 0, i.e. when|κ| 6 1
2. Changingλ from a negative to a positive value

can be viewed as a phase transition, with transition pointλ = 0.
Let us stress that there is no way to obtain the quantization of the Hall conductance

from our classical field theory: the condition (4) is merely replaced by equation (15).
Thus, the modified Girvin model (1) can be viewed as theλ→ 0 limit of two, slightly

different systems, one of them correct forκ > 1
2, the other forκ 6 1

2. In both cases, there is
a natural boundary condition at infinity, dictated by finite energy. However,|κ| → 1

2 when
λ→ 0, so that both conditions can be used. In this limit, the boundary condition at infinity
has to be put in manually, since one cannot know what stays ‘behind’ the coefficientλ = 0.
(This also happens for ’t Hooft–Polyakov monopoles in the Prasad–Sommerfeld limit.)

In [HHY], we show that, for potential (14) withλ 6= 0, the system admits a six-parameter
group of symmetry, made of the unbroken parts of the ‘geometric’ and ‘hidden’ Schrödinger
symmetries. It is easy to see that, forλ = 0 some of the obstructions are lifted so that
‘imported’ dilatations and expansions are also unbroken. Thus, we have the full ‘hidden’
Schr̈odinger symmetry, just like for the purely quartic potential [EZA, JPH].

It is worth pointing out that the field-theoretical generalization of the Girvin model
is thenon-relativistic Maxwell–Chern–Simonssystem proposed by Manton [MAN], whose
(2+ 1)-dimensional Lagrangian reads

1

2
b2− i

2
(ψ∗Dtψ − ψ(Dtψ)

∗ + |Dψ |2+ U(ψ)− κ
2
(bat + a× e)+ at + a · T (17)

where the constant vectorT (called the transport current) has been included for the sake of
Galilean invariance. Note also the absence of an electric term. In a suitable Galilei frame
T vanishes [MAN] and, forU(ψ) ≡ 0 and identifyingat with −iφ, the modified Girvin
system (1) is recovered, when time independence is assumed.

So far, we have been working with a spinless matter field. Introducing spin would not
change the situation, though. Modifying the Lagrangian (1) as

Lspin= 1
2b

2+ (D9)†(D9)+ iφ
(
9†9 − 1

)− b9†σ39 − i
κ

2
(bφ + a×∇φ) (1′′)

where9 is a two-component Pauli spinor, would replace (2a) by the Pauli equation

iφ9 = [D2+ bσ3]9 (2a′′)
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while (2b) and (2c) remain unchanged up to = −i(9†D9 − (D9)†9)+∇× (9†σ39).

Then, for κ = ±( 1
2), the spinning system admits self-dual solutions of definite chirality,

9+ =
( 0
ψ+

)
and9− =

(
ψ−
0

)
, with % = |9±| satisfying thesameLiouville-type equation (5)

[HHY].
In [ZH], Zhang et al proposed another ‘Landau–Ginzburg’ theory for the QHE. They

consider a scalar fieldψ coupled to a gauge fieldAµ, described by the Lagrangian

LZ = 4θεij (2A0∂iAj − Ai∂0Aj)− 1

4θ
εµνσAµ∂νAσ

+ψ∗[i∂0− (A0+ Aext
0 )]ψ + ψ∗[−i∇− (A+Aext)]2ψ + U(ψ) (18)

where Aext
µ is the vector potential of an external electromagnetic field, andU(ψ) =

µ|ψ |2−λ|ψ |4 is a quartic self-interaction potential. They argue that their theory is different
from that of Girvin and MacDonald. We show, however, that for a static system in a
purely magnetic background and forU(ψ) ≡ 0, the two models are indeedmathematically
equivalent. To see this, let us note that under the above restrictions, after some partial
integrations and dropping surface terms, the Lagrangian of Zhanget al becomes(

4θ − 1

4θ

)
εµνσAµ∂νAσ − A0|ψ |2+ |(−i∇− (A+Aext)ψ |2. (19)

On the other hand, the Girvin–MacDonald model can also be presented in a slightly
different way. Let us indeed consider a static, purely magnetic external fieldBext. Then,
settinga = −A−Aext andA0 = −iφ, we find that, for the choice

κ = 1

Bext
(20)

the (original) Girvin–MacDonald Lagrangian (i.e. (1)without the b2/2 term) becomes, up
to a surface term,

LG = |∇− i(A+Aext)ψ |2− A0|ψ |2− κ
2
(A0∇×A+A×∇A0) (21)

which is indeed (19) whenκ = −8θ + 1
2θ†.

In [EZA] Ezawaet al have shown that the model of Zhanget al admits, for a suitable
choice of the self-interaction potentialU(ψ), topological as well as non-topological vortex
solutions. In the light of our results we see that, alternatively, we can add ab2 term to the
Lagrangian while still working withU(ψ) = 0.

As to the physical significance of our solutions, our ‘topological’ vortices correspond to
quasiparticles and quasiholes. The physical interpretation of our ‘non-topological’ vortices
is, however, not yet clear. We are currently working on this issue.
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